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Parameter-Space Survey of Linear G-mode and Interchange in Extended
Magnetohydrodynamics

E. C. Howell1, a) and C. R. Sovinec1, b)

Department of Engineering Physics, University of Wisconsin-Madison

(Dated: 29 June 2017)

The extended magnetohydrodynamic stability of interchange modes is studied in two configurations. In slab
geometry, a local dispersion relation for the gravitational interchange mode (g-mode) with three di↵erent
extensions of the MHD model [P. Zhu, et al., Phys. Rev. Lett. 101, 085005 (2008)] is analyzed. Our results
delineate where drifts stablize the g-mode with gyroviscosity alone and with a two-fluid Ohm’s law alone.
Including the two-fluid Ohm’s law produces an ion drift wave that interacts with the g-mode. This interaction
gives rise to a second instability at finite ky. A second instability is also observed in numerical extended MHD
computations of linear interchange in cylindrical screw-pinch equilibria, the second configuration. Particularly
with incomplete models, this mode limits the regions of stability for physically realistic conditions. However,
applying a consistent two-temperature extended MHD model that includes the diamagnetic heat flux density
(~q⇤) makes the onset of the second mode occur at larger Hall parameter. For conditions relevant to the SSPX
experiment [E.B. Hooper, Plasma Phys. Controlled Fusion 54, 113001 (2012)], significant stabilization is
observed for Suydam parameters as large as unity (Ds . 1).

I. INTRODUCTION

Extended-MHD models are extensions of magnetohy-
drodynamics (MHD) that bridge the gap between MHD
and kinetic models. The macroscopic evolution of mag-
netically confined plasma is most accurately described in
six-dimensional phase space using a kinetic model. How-
ever, kinetic models can be di�cult to analyze, and at
present, long-time kinetic simulations of macroscopic dy-
namics are not feasible. Resistive MHD treats the plasma
as a fluid in three-dimensional physical space, and it is
frequently used to model long-time dynamics. MHD rep-
resents the limit of vanishing particle Larmor radii and
neglects a number of physical e↵ects that are relevant to
high-temperature plasmas. Extended MHD models aug-
ment resistive MHD with some of the important high-
temperature e↵ects while retaining the convenience of
fluid models.1 However, as we emphasize in this work,
incomplete versions of extended MHD pose a risk of intro-
ducing unphysical e↵ects that would not occur in kinetic
treatments or self-consistent extended MHD models.

Drift stabilization of interchange modes is one area
where the additional e↵ects represented in extended
MHD are important. Interchange is a class of pressure-
driven modes that are unstable in regions where the mag-
netic field curvature is concave towards regions of high
pressure. Interchanging two adjacent flux tubes in these
regions can access a lower energy state, hence the un-
stable behavior.2 Electron and ion diamagnetic e↵ects
introduce drifts which alter the phase relations among
the responses that characterize interchange modes. This
can enhance stability with respect to interchange when
the drifts are su�ciently large.

a)Presently at Auburn Univ., Auburn, AL 36849, USA; Electronic
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b)Corresponding author: csovinec@wisc.edu

The gravitational interchange mode (g-mode) is use-
ful for studying drift stabilization of interchange modes.
The g-mode analysis introduces a fictitious gravity to
represent the interaction of pressure and field-line cur-
vature in simple slab configurations. Rosenbluth, et al.
applied kinetic analysis to this configuration to show
that drift e↵ects stabilize the g-mode when the drift
frequency exceeds twice the MHD growth rate: |!⇤| >
2�mhd.3 Roberts and Taylor reproduced the drift sta-
bilization using a two-fluid model4 that can be viewed
as a precursor to extended MHD.1,5 Later, Ferraro and
Jardin generalized the g-mode analysis to include finite
compressibility,6 and Zhu, et al. showed that complete
stabilization of the g-mode can fail at finite �-values in
a reduced fluid model that includes ion gyroviscosity but
uses the MHD Ohm’s law.7 More recently, Goto et al.
showed that stabilization can also fail in the reduced
model that uses the two-fluid Ohm’s law but neglects
ion gyroviscosity.8

The g-mode analysis presented here examines the be-
havior of Zhu’s extended MHD system as the normalized
gravitational drift frequency is scanned in reduced and
complete models. A second instability at large normal-
ized drift frequency is found in models with the Hall term
in Ohm’s law. The full extended MHD system with the
Hall term and ion gyroviscosity also exhibits additional
instabilities. Our analysis shows that the second instabil-
ity arises due to the interaction between an ion drift wave
and the stabilized g-mode. Additional unstable modes
occur in conditions outside the validity of the extended
MHD model, but they may be a concern for macroscopic
modeling with this system.
The relation between our g-mode analysis and recent

work by Ito and Miura, Ref. 9, deserves special mention.
There are substantial parallels with respect to examin-
ing the predictions of MHD models that are extended
by gyroviscosity alone, by a two-fluid Ohm’s law alone,
and by both e↵ects. This framework follows from the
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study by Zhu, et al., Ref. 7. As in the results presented
in Section III, Ito and Miura find conditions where drift
stabilization is and is not possible in the models and also
note the existence of additional instabilities in some con-
ditions. However, we work with normalized equations
and the simpler profiles of Ref. 7, and we additionally
apply asymptotic analysis, which all help elucidate the
underlying physical dependencies. We also place more
emphasis on the origins of the second instability that
arises in models with a two-fluid Ohm’s law.

Our study was initially motivated by an interest10 in
interchange modes in the Sustained Spheromak Physics
Experiment (SSPX).11,12 Thus, we also consider drift sta-
bilization of interchange in cylindrical screw-pinch equi-
libria with parameters based on SSPX. Jardin first used
this class of equilibria to map out the ideal stability
boundaries of spheromaks.13 He showed that these equi-
libria reproduce the stability properties of toroidal equi-
libria for toroidal mode numbers n 6= 1. DeLucia, et al.
used these model equilibria to study resistive interchange
modes in spheromaks.14 They also present the first study
of drift e↵ects on interchange modes in spheromaks and
find stabilization of the resistive interchange mode at suf-
ficiently large ion skin depth in a model with cold ions.
Hammet and Tang applied a kinetic model to study inter-
change modes in these equilibria and showed that kinetic
e↵ects greatly increase the stability limits of ideal inter-
change modes.15 We note that Hammet and Tang applied
an ordering that removes drift waves from the system.

The cylindrical computations presented here find a sec-
ond instability that has both similarities and di↵erences
to the second instability of the slab g-mode analysis. Rel-
ative to single-temperature predictions, two-temperature
modeling with diamagnetic heat-flux density puts the on-
set of the second mode at larger values of the Hall param-
eter. Another recent study16 of cylindrical interchange
considers the qualitatively di↵erent perpendicular con-
ductive heat-flux density for stellarator profiles but does
not address diamagnetic heat-flux density that proves im-
portant in our screw-pinch computations. The sensitivity
of this second instability to which terms are included in
both the g-mode and the screw-pinch results highlights
the importance of using a self-consistent model.

The remaining sections of this paper are organized in
the following manner: Section II discusses the extended
MHD model considered in this work. The analysis of
Zhu’s local g-mode dispersion relation is presented in
Section III. Section IV presents a numerical study of
interchange modes in our model spheromak equilibria ge-
ometry. We conclude with a discussion of our results in
Section V.

II. EXTENDED MHD MODEL

We consider an extended MHD model that is based on
Braginskii’s equations17
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Equations 1-2 are the continuity and momentum equa-
tions for the bulk fluid. Here n is the number density
(quasi-neutrality is assumed), m is the e↵ective particle
mass (mi +me), ~V is the center of mass flow velocity,
⇢ = nm is the mass density, p = pi + pe is the to-
tal pressure, ~~⇡i is the ion stress tensor, and ⇢~g is the
force density due to gravity. Equation 3 is the tem-
perature evolution equation for each species. Here �s
is the ratio of specific heats, and ~qs is the heat flux den-
sity. Equations 4-6 are Ampere’s law, the magnetic diver-
gence constraint, and Faraday’s Law. Equation 7 is the
two-fluid Ohm’s law and represents the electron momen-
tum equation, where ⌘ is the electrical resistivity. The
first two terms on the right side are the standard MHD

Ohm’s law. The Hall
%
~J ⇥ ~B/ne

&
and electron pressure-

gradient (rpe/ne) terms represent two-fluid corrections
to MHD. We note that Braginskii’s derivation assumes
that e↵ective collisional mean-free-paths are small rela-
tive to spatial scales L and that flows are of the same
order as the ion thermal velocity vthi, i.e. the “MHD
ordering.”18 Neither approximation is representative of
high-temperature magnetic-confinement conditions, but
the system does represent e↵ects that are first-order in
vthi/L⌦i, where ⌦i is the ion cyclotron frequency.
The ion gyroviscous stress tensor appears in Equation

(2) as part of ~~⇡i. It represents the first-order corrections
due to ion finite Larmor radius (FLR) e↵ects and is given
by the expression
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where
~~W is the traceless rate of strain tensor
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~~I is identity tensor, and b̂ is the direction of the magnetic
field. With the exception of noted computations in Sec-
tion IVC and the modeling presented in Section IVD,
we assume that Ti = Te.

The nimrod 19,20 code is used in Section IV to evolve
Equations 1-7. These calculations include a dissipative

isotropic stress, �⇢⌫
~~W , in ~~⇡i. Artificial particle dif-

fusivity and hyper-di↵usivity
)
r ·

)
Drn�Dhr2rn

**

are also included in Equation 1 to aid the numerics by
smoothing small-scale density fluctuations. nimrod does
not solve the magnetic divergence constraint explicitly;

instead, a magnetic divergence di↵usivity
%
�Brr · ~B

&

is added to the right side of Equation 6 to maintain low
divergence error with high-order representations.19

In this work, we consider the consequences of using
simplified versions of the extended MHD system of equa-
tions. The simplest is the MHD model, which neglects
ion gyroviscosity and the two-fluid terms in Ohm’s law
and is consistent at zeroth order in vthi/L⌦i. The “gy-
roviscous model” includes ion gyroviscosity in the mo-
mentum equation but is otherwise identical to the MHD
model. The “two-fluid model” neglects ion gyroviscos-
ity but includes the Hall and electron pressure gradient
terms in Ohm’s law. The full extended MHD model in-
cludes both ion gyroviscosity and the two-fluid Ohm’s
law. Zhu, et al. thoroughly analyzes the g-mode in the
gyroviscous model and only briefly comments on behav-
ior with the two-fluid and full models, noting that there
are cases where stabilization may fail.7 A central con-
tribution of the present work is to consider the stability
predictions of these models in greater detail. For com-
pleteness, we also consider the gyroviscous model.

III. LOCAL ANALYSIS OF THE GRAVITATIONAL
INTERCHANGE

In this section we use the gravitational interchange
mode as a model for interchange stability in magneti-
cally confined plasma. The analysis uses the local dis-
persion relation derived by Zhu, et al. for the g-mode in
a shearless slab configuration.7 Zhu considers the static
equilibrium described by

~V = 0 (10)

~B = Bêz (11)

d

dx

#
p+
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2µ0

$
= ⇢g (12)

neEx =
d

dx
pi � ⇢g, (13)

where gravity points in the x-direction and is balanced by
gradients in the pressure and magnetic field. Equilibrium
quantities only vary in the x-direction.

The dispersion relation is derived using the extended
MHD model (Equations 1-7). The derivation neglects

dissipative e↵ects, i.e. ⌘ = ⌫ = ~q = 0, but retains the ion
gyroviscous stress and the two-fluid terms in Ohm’s law.
Perturbed quantities vary as f̃ = f̃ (x) eiky y�i!t. The
model uses the ordering kyL ⇠ ✏�1, kyri ⇠ 1, and ṽy ⇠
✏ṽx where ✏ ⌧ 1 is a small parameter, L is the equilibrium
gradient scale length, and r2

i = pi/
)
⇢⌦2

i

*
is the square of

the ion Larmor radius. Formally, extended MHD is only
physically valid for kyri ⌧ 1, but the ordering kyri ⇠ 1
permits the study of the extended MHD model at all
values of kyri.
Our normalized form of Zhu’s g-mode dispersion rela-

tion is

(A0 +A2)X
3 + (X⇤1 +X⇤3)X

2

+ (⌥0 +⌥2)X +D1 = 0
(14)

A0 = 1 + �s� (15)
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+� [1 + P � �sN ])
(17)

X⇤3 = ��2�G3N
2

4
(18)

⌥0 = 1 + �s� + S (19)

⌥2 = ��G2 [(1 + �) (P + 1)P

� ((1 + �s�⌧) + (1 + �) �sP )N + (1 + P ) ⌧�]
(20)

D1 = �G (P � �sN) , (21)

where X = !/�M is the frequency normalized by
�M =

+
�⇢0g/⇢, the MHD growth rate in the �, S ⌧ 1

limit. We are interested in the case where the g-mode
is MHD unstable and assume that �M is real (⇢0g < 0).
G = !g/�M is the gravitational drift frequency, !g =
�kyg/⌦i, normalized by �M . P = !pi/!g and N =
!ni/!g = k2

yr
2
i /G

2 are the ion diamagnetic drift frequen-
cies due to the ion pressure gradient, !pi = kyp0

i/ (⌦i⇢),
and the ion density gradient, !ni = kypi⇢0/

)
⌦i⇢2

*
,

respectively, normalized by the gravitational drift fre-
quency. The parameter ⌧ = pi/p is the ion pressure
fraction, � = µ0p/B2, and S = g2/

)
V 2
a �

2
M

*
= ⌧�/N

scales the density variation with respect to the square of
the Alfvén speed, V 2

a = B2/ (µ0⇢), and the gravitational
acceleration. The markers � and � indicate contributions
due to the two-fluid Ohm’s law and gyroviscosity, respec-
tively. The subscripts of the coe�cients Ai, X⇤i, ⌥i, and
Di indicate how the coe�cients scale with G. For exam-
ple, A2 scales as G2.
The normalized parameters N , P , and S are properties

of an equilibrium, and the relative strength of two-fluid
and gyroviscous terms are represented by G. Increasing
|G| corresponds to increasing kyri for a given equilib-
rium profile. The limit of physical validity

)
k2
yr

2
i ⌧ 1

*

expressed in dimensionless variables is G2N ⌧ 1.
The normalized ion diamagnetic frequency N is posi-

tive for the unstable g-mode. Positive-N implies that the
gravitational drift propagates in the ion-density-gradient
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diamagnetic direction, and waves with frequencies pro-
portional to + (�)G propagate in the ion (electron) dia-
magnetic direction. The magnitudes of P and N are
determined by MHD force balance and the ion pressure
fraction ⌧ .

Equation 14 is a cubic polynomial with real coe�-
cients. It always has at least one real root. The system is
stable if there are three real roots. Otherwise, two roots
are complex conjugates, and the system is unstable. One
of the complex conjugates is a growing unstable mode,
and the other is a damped stable mode. The growing
and damped modes have the same real frequency and
propagate in the same direction.

In Section IIIA a perturbative expansion is used to
evaluate the roots in the small-|G| limit. The method
of dominant balance is used in the large-|G| limit, where
the scaling X ⇠ O (Gn) is assumed. The exponent n
is chosen such the highest order terms in Equation 14
balance. The resulting balance is used to calculate the
asymptotic behavior of X. The roots of Equation 14 are
calculated numerically for arbitrary G in Sections III B-
IIID.

A. Small G Perturbation Theory

The roots of Equation 14 in the small-|G| limit are
found using a perturbative expansion. The complex fre-
quency X and Equation 14 are expanded into terms of
order |G|n. This expansion produces a hierarchy of equa-
tions. The three lowest-order equations are:

|G|0 : A0X
3
0 +⌥0X0 = 0 (22)

|G|1 : X1 = �D1 +X⇤1X2
0

3X2
0A0 +⌥0
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3X2
0A0 +⌥0

⇥
)
A2X

2
0 + 3X2

1A0 + 2X⇤1X1 +⌥2

*
.

(24)

Equation 22 has three solutions X0 = 0 and X0 =
±i

+
⌥0/A0. Inserting X0 = 0 into Equations 23-24 pro-

duces the solution

X = �D1/⌥0 +O
%
|G|3

&
. (25)

Equation 25 describes a stable ion drift wave. Its direc-
tion of propagation is determined by the sign of D1.

The two roots X0 = ±i
+
⌥0/A0 are the unstable g-

mode and its corresponding damped complex conjugate.
Inserting X0 into Equations 23-24 produces the solution

X = Y1 ± i

,
⌥0

A0

'
1 +

1

2⌥0

#
3Y 2

1 A0

+2X⇤1Y1 +⌥2 �
A2

A0
⌥0

$(
+O

%
|G|3

& (26)

Y1 =
A0D1 �X⇤1⌥0

2⌥0A0
. (27)

Equations 26-27 describe the extended MHD modifi-
cations to the g-mode at small values of |G|. There
are two e↵ects. First, extended MHD imparts a finite
real frequency of order G1. Second, extended MHD
modifies the growth rate of the mode. This modifica-
tion to the growth rate is of order G2. The sign of
3Y 2

1 A0 + 2X⇤1Y1 + ⌥2 � A2
A0

⌥0 determines if the ex-
tended MHD e↵ects increase or decrease the growth rate
at small-|G|. The ⌥2 and A2 terms appear in the lowest-
order correction to the growth rate. They are second-
order in G and are normally neglected in derivations that
assume a small ordering for the extended MHD e↵ects.
However, the lowest-order correction to the growth rate
is at second order, and including these terms is necessary
for consistency. Similarly, the term D1 appears in the
lowest-order corrections to both the real frequency and
the growth rate. This term is linear in G, yet it is ab-
sent in derivations of the g-mode that predate Zhu, et al.
Analysis of Equations 25 and 26 in the following sections
augment our discussion of calculations with the systems
for arbitrary G.

B. Gyroviscous g-mode Analysis

The dispersion relation for the gyroviscous model is
found by setting � = 1 and � = 0 in Equations 14 - 21.
The dispersion relation in this case is

(A0 +A2)X
3 +X⇤gX

2 +X⌥0 = 0 (28)

A0 = 1 + �s� (29)

A2 =
⌧G2N

4
� (30)

X⇤g = G [(1 + �s�) (1 + �)P + (2 + �s�) ⌧�] (31)

⌥0 = 1 + �s� + S. (32)

There are three solutions to the cubic dispersion relation.
The first solution is the zero-frequency mode X = 0.
The other two solutions are found using the quadratic
equation

X =
1

2A

%
�X⇤g ±

-
X2

⇤g � 4A⌥0

&
, (33)

where A = A0 + A2. The two roots are real (indicating
stability) if X2

⇤g � 4A⌥0 � 0, and they are complex (in-
dicating instability) if X2

⇤g � 4A⌥0 < 0. The stability
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requirement that X2
⇤g � 4A⌥0 � 0 can be expressed as

G2

.
[(1 + �s�) (1 + �)P + (2 + �s�) ⌧�]

2

1 + �� + S

� ⌧N�

/

� 4 (1 + ��) .

(34)

The inequality is never satisfied for real G if the term
in brackets is negative, and stabilization does not occur.
This equation is analogous to Equation 22 in Ref. 7 (and
Equation 54 in Ref. 9), where the authors note that in
the � ! 0 limit, the bracketed term is positive. In this
limit gyroviscous stabilization always occurs at signifi-
cantly large G. In Appendix A we show that the brack-
eted term in Equation 34 is also positive for 0 < N  P .
This condition corresponds to the situation where both
rn and rT are anti-parallel to ~g.

From Equation 33 we observe that X scales as G�1 in
the limit that |G| � 1. Therefore, even in cases where
stabilization is not possible, the asymptotic growth rate
still goes to zero with G�1.

In the limit of |G| ⌧ 1, the perturbative expansion
from Section IIIA yields

X ⇡ �X⇤g
2 (1 + �s�)

± i

0
1 + �s� + S

1 + �s�

#
1� ⌧�G2N

8 (1 + �s�)

�
X2

⇤g
8 (1 + �s�) (1 + �s� + S)

"

+O
)
G3

*
.

(35)

At small values of |G|, the gyroviscous g-mode has a real
frequency, and the mode propagates in a direction deter-
mined by the sign of X⇤g. X⇤g has the same sign as G
for positive P , and the mode propagates in the electron
diamagnetic direction. The second and third terms in
parentheses in Equation 35 are positive definite, indicat-
ing that gyroviscosity is stabilizing at small-|G|.

Figure 1 shows the numerically calculated frequencies
for equilibrium parameters ⌧ = 0.5, � = 0.1, P = 0.5,
N = 0.025, and S = 2, where the bracketed term in
Equation 34 is positive, so stabilization is possible. There
are three modes: the unstable branch of the g-mode
(green), the stable branch (blue), and the trivial zero
frequency mode (red). Initially the two branches of the
g-mode have the same real frequency. The frequency is
negative indicating that they propagate in the electron
diamagnetic direction. IncreasingG decreases the growth
rate of the unstable branch, and stabilization is observed
around G ⇡ 5. At the point of stabilization, the real
frequencies of the two branches of the g-mode split. At
su�ciently large G, beyond the range of the plot, both
real frequencies asymptote to zero. However, at large G
the model is not physically valid.

Figure 2 shows the numerically calculated frequencies
for a case that has ⌧ = 0.5, � = 0.1, P = 1 ⇥ 10�3,
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FIG. 1. Linear growth rates characteristic of the gyroviscous
g-mode for conditions where the bracketed term in Equation
34 is positive. Initially both the unstable branch (green) and
the stable branch (blue) have the same real frequency. After
stabilization, the two modes have di↵erent real frequencies.
Both branches eventually asymptote to zero at large-G (not
shown).

N = 1, and S = 0.05, where X2
⇤g � 4A⌥0 < 0 for all

G2, hence an unstable mode for all G. Here, the growth
rate of the unstable branch continuously decreases with
increasing G and asymptotes to zero as G�1. The real
frequency of both branches of the g-mode are the same
for all G. The frequency is again negative, indicating
that the mode propagates in the electron direction. Ini-
tially, its magnitude increases with G, but it peaks at an
intermediate value, and then it asymptotes to zero at the
rate G�1.
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G

! 1.5

! 1.0

! 0.5

0.0

0.5

1.0

1.5

Im
X

FIG. 2. Linear growth rates characteristic of the gyroviscous
g-mode in conditions with X 2

! g ! 4A⌥0 < 0. Both branches of
the g-mode have the same real frequency for all G. The real
and imaginary frequencies asymptote to zero at large-G.

C. Two-Fluid g-mode Analysis

The dispersion relation for the two-fluid model is
found by setting � = 0 and � = 1 in Equations 14-21.
The resulting dispersion relation is
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AX3 +X⇤X
2 +X⌥0 +D = 0 (36)

A = 1 + �s� (37)

X⇤ = G (1 + P � �sN) (38)

⌥0 = 1 + �s� + S (39)

D = G (P � �sN) . (40)

We set � = 0 in this system but allow for finite P and
N . None of the terms containing � depend on G, and
setting � = 0 does not change the qualitative behavior
of the model. It e↵ectively re-scales the coe�cients in
Equation 36. Additionally, � is small for most systems of
interest, and neglecting it has a small quantitative e↵ect.
For simplicity, we also take the limit of S = g⇢/V 2

A⇢
0 !

0. Thus, the model two-fluid g-mode dispersion relation
that we analyze is

X3 +X⇤X
2 +X +D = 0 (41)

X⇤ = G (1 +H) (42)

D = GH. (43)

Equation 41 only depends on the two parameters G and
H = P��sN . The parameterH is a normalized modified
ion diamagnetic drift frequency. It is purely a function of
equilibrium quantities, and in the cold-ion limit, where
dropping ion-FLR e↵ects is formally valid, H = 0.

A criterion for stability is found by considering the
critical points of the polynomial Q (X) = X3 +X⇤X2 +
X +D. The critical points xa  xb satisfy the condition
Q0 (xa) = Q0 (xb) = 0. A necessary condition for stability
is that xa and xb must both be real with Q (xa) � 0 and
Q (xb)  0. The direction of the inequalities results from
the fact that the leading-order coe�cient, A, is positive.
If xa = xb then stability requires Q (xa) = Q (xb) =
0. This stability criterion follows from the mean value
theorem and the requirement that Q (X) has three real
roots.

The critical points of Q (X) are

xa,b =
�G (1 +H)

3
± 1

3

-
G2 (1 +H)2 � 3. (44)

Stability requires that the two critical points given in
Equation 44 are real. It follows that a necessary (but
not su�cient) condition for stability is

G2 (1 +H)2 � 3. (45)

Equation 45 shows that conditions with either H = �1
or G = 0 are in the unstable regime.

We first use Equations 25-27 to understand the so-
lutions to the two-fluid dispersion relation in the limit
|G| ⌧ 1. In this model ⌥0 = A0 = 1, ⌥2 = 0, A2 = 0,
D1 = GH, and X⇤1 = G (1 +H). Inserting these re-
lations into Equation 25 produces the stable drift wave
X = �GH. The drift wave propagates in the electron

diamagnetic direction when H is positive and in the ion
direction when H is negative.
Evaluating Equations 26-27 for the two-fluid model

produces X = �G/2 ± i
1
1�G2 (1 + 4H) /8

2
. The +

solution is the unstable g-mode, and the � solution is
the corresponding damped mode. Two-fluid e↵ects re-
duce the growth rate of the unstable mode at small |G|
when H > �1/4 and increase it when H < �1/4. A
higher-order perturbative expansion is required to eval-
uate the case H = �1/4. Both branches of the g-mode
propagate in the electron diamagnetic direction.
We analyze the opposite limit of |G| � 1 by assuming

that X scales as either G1 or G0 for H 6= �1. In the
case that X scales as G1, the first two terms of Equation
41 both scale as G3 while the last two terms scale as G.
For |G| � 1 the first two terms dominate, and balancing
these terms yields an ion drift wave X = �G (1 +H).
This wave propagates in the electron diamagnetic direc-
tion for H > �1 and in the ion diamagnetic direction for
H < �1.
Similarly, in the limit that X scales as G0, the second

and fourth terms in Equation 41 are both linear in G
while the first and third terms have no G-dependence.
Balancing the second and fourth terms yields the two

solutionsX = ±
-

�H
1+H . The conditionsH  �1 and 0 <

H are unstable in this limit. The asymptotic growth rate

at large-|G| is
-

H
1+H . This growth rate is independent

of ky/⌦i and is of order unity, implying that the growth
rate scales with the MHD growth rate.
In the case H = �1, the asymptotic behavior is found

by assuming that X scales as G1/3. Here the cubic term
and the constant term balance. The three modes areX =
G1/3 andX = G1/3

)
�1/2± i

p
3/2

*
, and the growth rate

of the unstable branch asymptotes to infinity.
The roots of the two-fluid dispersion relation (41) are

calculated numerically in order to analyze the stability
for arbitrary G and H. We plot the real and complex
roots as a function of G for given values of H. Increasing
|G| corresponds to increasing the Hall parameter for a
fixed equilibrium.
The roots are shown in Figure 3 for the case where

H = 0. This case is analogous to the Roberts-Taylor
dispersion relation,4 but it includes a zero-frequency drift
wave. The unstable g-mode and the corresponding stable
branch are in green and blue respectively. Stabilization
of the unstable branch is observed for |G| � 2. These
two modes have a real frequency of �G/2 for |G| < 2.
Their real frequencies split at |G| = 2. For large-G one
frequency tends towards 0 and the other tends towards
�G.
Similar behavior is observed for �1/4 < H < 0. Figure

4 shows the case for H = �1/8. Here, the two-fluid ef-
fects tend to stabilize the g-mode for allG. The green and
blue lines correspond to the unstable and stable branches
of the g-mode, and the red line is the drift wave. The
drift wave has a finite frequency since H 6= 0. The drift
wave and the two branches of the g-mode always propa-
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FIG. 3. The real and imaginary frequencies of the three modes
are shown for H=0. The green line is the unstable g-mode, red
is the drift wave, and blue is the stable branch. Stabilization
occurs at G2 = 4.

gate in opposite directions for H < 0. The critical-G at
which stabilization is observed increases with decreasing
H. Stabilization occurs at |G| ⇡ 2.57 for the case shown
in Figure 4.
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FIG. 4. The complex frequencies of the three modes are shown
for H = ! 1/ 8. This case is representative of all cases with
! 1/ 4 < H < 0. Stabilization is observed for |G| & 2.57. The
ion drift wave has a finite real frequency. The g-mode and
the ion drift wave propagate in opposite directions.

In the region �1 < H < �1/4, the analysis predicts
that the two-fluid e↵ects increase the growth rate of the
unstable mode at small |G|, but stabilization is expected
at large-|G|. Figure 5 shows the case for H = �1/2.
The growth rate of the unstable g-mode increases for
small values of |G| and peaks around |G| ⇡ 2.3 with
a maximum growth rate of Im (X) ⇡ 1.1. The growth
rate decreases for |G| > 2.3, and stabilization occurs at
|G| ⇡ 6.67. The maximum growth rate and critical-G
required for stabilization increase with decreasing H. At
H = �1 stabilization is lost, and for H  �1 the two
fluid e↵ects are destabilizing for all G. Figure 6 shows
the case for H = �3/2 and is representative of all cases
forH < �1. The maximum growth rate decreases asH is
reduced below �1. In the limit G ! ±1 the asymptotic

growth rate is
-

H
H+1 .

Now consider conditions where H > 0. Figure 7 shows
the case for H = 0.04. Here, the two-fluid e↵ects tend
to stabilize the g-mode for small-|G|, and stabilization
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FIG. 5. The complex frequencies of the three modes are shown
for H = ! 1/ 2. This case is representative of all cases with
! 1 < H < ! 1/ 4. The two-fluid e↵ects increase the linear
growth rate for small |G|. The two-fluid e↵ects decrease the
growth rate at su�ciently large |G|, and stabilization is ob-
served.
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FIG. 6. The complex frequencies of the three modes are shown
for H = ! 3/ 2. This case is representative of all cases with
H < ! 1. There is no stabilization of the g-mode and the two-
fluid e↵ects increase the growth rate of the unstable mode for
all G. For the case shown, the growth rate asymptotes to

"
3

as |G| # $ .

occurs at |G| ⇡ 1.85. However, as |G| is increased, a sec-
ond mode becomes unstable at G ⇡ 2.55. For H > 0 the
drift wave and the two branches of the g-mode drift in the
same direction in the plasma rest frame. At |G| ⇡ 2.55
the drift wave intercepts the low-frequency branch of the
stabilized g-mode. Here the second instability becomes
unstable. Like the g-mode, this second instability has a
corresponding damped mode.
As H is increased, the critical-G for stabilization of the

g-mode decreases, and the critical-G for the onset of the
second instability decreases. The width of the region of
stability also decreases. At H = 1/8 these two points
coincide, and stability only occurs at |G| = 8

9

p
3. The

case is shown in Figure 8. This point satisfies the equality
relation in Equation 45. It also corresponds to where the
drift wave intersects the g-mode at the point that the
g-mode is stabilized. Here, both branches of the g-mode
and the drift wave all have the same frequency.
For H > 1/8 there is no region of stability along the

entire G axis. A representative case is shown in Figure 9
for H = 0.15. For all positive H, the maximum growth
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FIG. 7. The complex frequencies of the three modes are shown
for H = 0.04. Stabilization of the g-mode occurs at |G| %
1.85. A second mode is destabilized at |G| % 2.55. The
second mode becomes unstable when the drift wave intercepts
the low-frequency branch of the stabilized g-mode. This new
mode is unstable for all |G| & 2.55 and has an asymptotic
growth rate of 0.196.
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FIG. 8. The complex frequencies of the three modes are
shown for H = 1/ 8. The ion-drift wave (red) intersects
both branches of the g-mode (blue and green) at the point
|G| = 8

9

"
3. Here, the MHD g-mode is stabilized and the

second mode simultaneously becomes unstable.

rate is less than unity. The asymptotic growth rate as

G ! ±1 is
-

H
H+1 , and this asymptotic growth rate

approaches 1 as H is increased.
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FIG. 9. The complex frequencies of the three modes are shown
for H = 0.15. This case is representative of all cases with
H > 1/ 8. Here the real frequency of the drift wave (red)
intersects the real frequency of g-mode before the g-mode is
stabilized. There is no region of stability.

In summary the two-fluid modifications of the g-
mode are more complicated than the dynamics repre-
sented by the Roberts-Taylor dispersion relation: !2 +
!⇤!+�2

MHD.4 The stabilization properties represented in
Equation 41 strongly depend on the parameter H, which
only depends on the equilibrium ion pressure, density,
and gravity. A dependence on temperature is implicit in
the relation between pressure and density. The stabil-
ity properties are summarized as follows. The g-mode
is unstable for H  �1, and two-fluid e↵ects enhance
the growth rate of the unstable mode for all G. For
�1 < H < �1/4, two-fluid e↵ects enhance the growth
rate at small |G|, but are stabilizing at large |G|. Stabi-
lization is observed for su�ciently large |G|. Two-fluid
e↵ects are stabilizing for all G for �1/4  H  0, and
stabilization always results at a su�ciently large values
of |G|. For 0 < H  1/8 the two-fluid e↵ects are stabi-
lizing for small-|G|, and stabilization occurs for a range
of G. However a second mode becomes unstable at large
enough |G|. For 1/8 < H the two-fluid e↵ects reduce the
growth rate with respect to the MHD g-mode, but an
unstable mode exists for all values of G.
A key result is the appearance of a second instabil-

ity when H is positive. For 0 < H < 1/8 this second
instability forms when the drift wave interacts with the
low-frequency branch of the stabilized g-mode. The two
waves merge into a growing mode and a damped mode.
In terms of physical quantities the parameter H is

H =
�pi

n!

n (⌘i � (�s � 1))

⇢g
(46)

where ⌘i = nT !

n! T . The second expression relates H to
the ion temperature gradient (ITG) stability parameter
⌘i. The condition of positive H corresponds to ⌘i >
2/3 for �s = 5/3 (the unstable g-mode requires n!

n and
g have opposite signs). The criterion that the second
mode is unstable (⌘i > 2/3) is the same criterion for ITG
instability.
Despite having the same stability criteria, there are

a number of di↵erences between the second instability
and the ITG mode. The second mode is driven unsta-
ble by an interaction between the stable drift wave and
the low-frequency branch of the g-mode. The ITG is a
parallel sound wave that is driven unstable by an inter-
action with ion drifts.21 The growth rate of the second
mode scales with the growth rate of the MHD g-mode,
whereas the growth rate of the ITG scales with the sound
wave frequency. The ITG requires kk 6= 0, but our model
(Equation 41) assumes kk = 0.

D. Analysis of the Full Extended MHD g-mode

We now analyze the full g-mode dispersion relation
that includes both gyroviscosity and the two-fluid Ohm’s
law (Equations 14-21). The analysis first considers the
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limit |G| ⌧ 1 and then considers various large-|G| lim-
its. Finally, the solutions to Equation 14 are evaluated
numerically.

Equations 25-27 describe the solution in the limit
|G| ⌧ 1. Equation 25 produces the stable drift wave
X = �D1/⌥0. As is the case for the two-fluid model,
the direction of propagation is determined by the sign of
P � �sN . The wave propagates in the electron direction
if P > �sN and in the ion direction if P < �sN . Equa-
tions 26-27 describe the g-mode and the corresponding
damped mode.

Now consider the limit of large |G| and finite
p
N . The

model is not physically valid in this limit as it violates
kyri ⌧ 1. However, this limit can be realized in small-
scale dynamics of numerical codes that use the extended
MHD model. The dispersion relation in this limit is

A2X
3 +X⇤3X

2 +⌥2X +D1 = 0. (47)

The three roots of the equation can be found using the
orderings X ⇠ G1 and X ⇠ G�1. In the case where X ⇠
G1 the first two terms dominate, and the approximate
solution is

X ⇡ �X⇤3

A2
+O

)
G0

*
=

GN

⌧�
+O

)
G0

*
. (48)

In the case where X ⇠ G�1 the quadratic, linear, and
constant terms dominate. The resulting solutions are

X ⇡ � ⌥2

2X⇤3

!

1⌥

0

1� 4D1X⇤3

⌥2
2

"

+O
%
|G|�2

&
. (49)

The first mode is a drift wave that propagates in the ion
direction. The second two modes limit to zero-frequency
modes as G ! 1. They are stable if 4D1X⇤3/⌥2

2 <
1. A su�cient condition for stability is 4D1X⇤3 =
G4N2 (P � �sN) < 0 or more simply P < �sN . The con-
dition P < �sN is equivalent to ⌘i < 2/3 for �s = 5/3.
The ratio 4D1X⇤3/⌥2

2 is often small for realistic parame-
ters, and there are many cases that are stable but violate
the criteria P < �sN , so it does not represent a necessary
condition for stability.

The above results are only valid if A2, X⇤3, ⌥2, and D1

are all nonzero. The qualitative behavior of the model
can change if any of these terms are zero. An interest-
ing case to consider is X⇤3 = 0 and ⌥2 = 0. The terms
X⇤3 and ⌥2 represent the coupling between the two-fluid
e↵ects and gyroviscosity. They only appear when both
e↵ects are included in the model self-consistently. Ne-
glecting these two terms is representative of simple mod-
els that account for two-fluid e↵ects and gyroviscosity by
adding their respective drifts.

When X⇤3 = 0 and ⌥2 = 0, the dispersion relation is

A2X
3 +X⇤1X

2 +⌥0X +D1 = 0. (50)

The roots of the equation are found by using the ordering
X ⇠ G�1/3. Here the first and last terms balance, and
to lowest order, the roots are

X =

#
�D1

A2

$ �1/3

(51)

and

X =

#
�D1

A2

$ �1/3
!
�1

2
±

p
3

2
i

"

. (52)

The first mode is a stable wave, and the other two so-
lutions are an unstable mode and the corresponding sta-
ble mode. The growth rate of the unstable mode scales
G�1/3, and all three modes approach zero frequency as
G approaches 1.

We calculate the roots of the full extended MHD
dispersion relation numerically to investigate stability at
intermediate values of G. We start by considering an
equilibrium with � = 1%, �s = 5/3, and ⌧i = 1/2. Fig-
ure 10 shows the maximum growth rate for N = 10 as a
function of P and G. The color contours indicate the nor-
malized growth rate, and white regions are stable. The
horizontal line at P = 10 marks the point where P = N .
Here, the equilibrium temperature gradient is zero. Be-
low this line the temperature gradient opposes the den-
sity gradient, and above this line the two gradients point
in the same direction. The vertical line at G ⇡ 0.032
marks the condition where kyri = 1/10. The maximum
value of G shown corresponds to kyri = 1/2.
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FIG. 10. Contours of constant Im (X ) > 0 for the full model
with N = 10 and ! = 1.0%. Regions of stability are white.
The vertical line at G % 0.032 marks ky r i = 1/ 10 and the
horizontal line marks P = N . The domain of G corresponds
to 0 & ky r i & 0.5.

Stabilization of the g-mode does not occur for kyri <
1/2 when P . N . It may occur at larger values of G,
but here the extended MHD model is not valid. However,
when P > N there is a large region of stability at finite
G. Often, when P is small, stability is not achieved until
the validity of the extended MHD model is questionable;
however, at su�ciently large P stability occurs where
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extended MHD is valid. At su�ciently large P , there are
three instabilities separated by two regions of stability.

The three roots of the dispersion relation are shown for
P = 100 in Figures 11 and 12. Figure 11 focuses on the
region around the g-mode and the second instability. The
three modes are the unstable g-mode (green), its damped
counterpart (blue) and an ion drift wave (red). All three
modes propagate in the electron diamagnetic direction,
and initially both branches of the g-mode have the same
real frequency. At the point of stabilization, the two
branches of the g-mode become real waves with distinct
real frequencies. Then, the ion drift wave intersects the
high-frequency branch, and this interaction creates a new
instability. This new instability has a growth rate that
is less than the MHD growth rate; it is stabilized at a
large value of G, and after stabilization its two branches
become real waves with distinct frequencies. Figure 12
shows that these two real waves recombine at an even
larger value of G to produce a third instability. This
third instability has a growth rate that is larger than
the original MHD growth rate, but it exists in a region
where extended MHD is not valid. The third instability
has a maximum growth rate that is approximately 260
times larger than the MHD growth rate. It is eventually
stabilized around G = 4.0 (not shown).
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FIG. 11. Linear spectrum for the full model with N = 10,
P = 100, and ! = 1.0%. Similar to the two-fluid model,
there is a second instability that is driven unstable when the
ion-drift wave interacts with the high-frequency branch of the
stabilized g-mode.

Between P = 50 and P = 60, the g-mode and second
instability merge. Here, there is no region of stability
separating the two modes. However, the interaction of
the drift wave with the g-mode still has an e↵ect. As
illustrated in Figure 13, there is a noticeable bulge in the
traces that extends the region of instability.

Results shown in Figure 10 are representative of the
dynamics for a wide range of N and �. In general when
P � N there are at least three distinct instabilities. The
first mode is the MHD g-mode, the second mode is driven
by the interaction between the high-frequency branch of
stabilized g-mode and the ion drift wave, and the third
instability is a recombination two branches of the pre-
viously stabilized mode. As P is decreased, there is a
critical point where the g-mode and the second mode
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FIG. 12. The linear spectrum calculated using the full model
using the same parameters as Figure 11. The domain is ex-
panded to show the onset of the third instability. This mode
is destabilized when the two stabilized branches on the second
instability recombine.
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FIG. 13. The linear spectrum calculated using the full model
with N = 10, P = 50, and ! = 1.0%. Here, there is no
region of stability between the g-mode and the second mode.
However, the second mode delays the onset of stability.

merge, and they are no longer distinguishable. This crit-
ical point increases with both N and �.
The second mode is similar to the mode observed in

the two-fluid model in that they are both driven unsta-
ble by an interaction between the ion drift wave and one
of the branches of the g-mode. However, there are some
qualitative di↵erences in the results from the two models.
In the two-fluid model, the mode is destabilized when the
ion drift wave interacts with the low-frequency branch of
the stabilized g-mode. At small positive H, the g-mode
and this second mode are distinct modes, while at larger
values of H, these two modes merge into one. Note that
H = P � �sN , and increasing H corresponds to increas-
ing P for fixed N . In the full model, the second mode is
driven unstable by an interaction between the ion drift
wave and the high-frequency branch of the stabilized g-
mode. At small values of P , the g-mode and the second
mode are indistinguishable, but at su�ciently large val-
ues of P , the two modes become distinct. In the two-fluid
model, this second mode is unstable at G = 1, while in
the full model, the mode is stabilized at finite G.
The third instability is a concern for numerical codes,

such as nimrod , that use the extended MHD model.
While this mode usually exists in a regime where ex-
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tended MHD is not physically valid, it exists in the
model. It may arise is computations that require highly
resolved meshes. It has a maximum growth rate that
greatly exceeds the MHD growth rate, so it may dom-
inate an otherwise-resolved extended MHD simulation.
While not universal, this mode is unstable for a wide
range of P , N , and �.

Finally, there are cases at high-� that contain a fourth
instability. This fourth instability exists at values of G
that are greater than the third regime of the instability,
and the extended MHD model is not valid. The growth
rate of this fourth mode is less than the maximum growth
rate of the third mode.

IV. LINEAR ANALYSIS OF STRAIGHT SPHEROMAK
EQUILIBRIA

In this section we present extended MHD compu-
tations of interchange modes in cylindrical screw-pinch
equilibria. The results exhibit many of the same qual-
itative features that are observed in the analysis of the
g-mode. The screw-pinch equilibria have spheromak-like
parameters, and we refer to them as “straight sphero-
maks.” The profiles are a generalization of those used by
Jardin,13 where the pressure is calculated by specifying a
uniform Suydam stability parameter across the domain.
The resulting pressure gradient is given by the formula

µ0p0 = �Dsr
B2

z
2

%
q!

q

&2
, where Ds = 0.25 corresponds to

ideal marginal stability. The equilibria use a quadratic

safety factor profile, q (r) = q0
%
1� q2

r2

a2

&
, that allows

for non-zero safety-factor values at the boundary, r = a,
unlike reference 6. Also, unlike the slab configurations of
Section III, these screw-pinch equilibria have magnetic
shear. Our boundary conditions at r = a represent a
close-fitting, electrically conducting wall.

By generating a family of equilibria with Ds rang-
ing from 0.2 to 2.0, we are able to study interchange
modes that are resistively unstable, weakly ideally unsta-
ble, and strongly ideally unstable. A case with Ds = 0.2
is ideal-interchange stable but resistive-interchange un-
stable. It is slightly below the ideal marginal stability
point of Ds = 0.25. The other cases with Ds > 0.25 are
all ideal-interchange unstable. The equilibrium density
and temperature profiles are calculated from the pres-
sure. All the cases presented use uniform density; how-
ever, calculations that use uniform temperature for the
same pressure profile exhibit similar behavior.10

The parameters of our straight-spheromak computa-
tions are based on conditions achieved in SSPX,12 where
consistency of pressure profiles before and after MHD ac-
tivity imply a pressure-driven limit.22 We list the dimen-
sional parameters in Table I. The values represent a re-
gion that is inside the separatrix of SSPX’s flux-core con-
figuration. The range in sound gyro-radius, ⇢s = Cs/⌦i,
of 7.1 ⇥ 10�3  ⇢s (0) /a  1.5 ⇥ 10�2 results with our
above-described scan of Ds from 0.2 to 2.0. The ion

skin depth value corresponds to a Hall parameter value
of ⇤ = di/a = (⌧a⌦i)

�1 = 0.13. The magnetic di↵u-
sivity, ⌘/µ0, is treated as an externally controlled pa-
rameter that is separate from the equilibrium tempera-
ture, and the range of values corresponds to varying the
Lundquist number

)
S = a2µ0/⌘⌧A

*
over the physically

relevant range of 6.3⇥ 103  S  6.3⇥ 106.

TABLE I. Physical parameters in our straight-spheromak
computations.

Parameter Value (MKS)
minor radius, a 0.25m
column length, L 2.0m
edge pressure, p (a) 400Pa

edge temp., Te (a) = Ti (a) 25 eV
particle density, n 5.0 ' 1019 m" 3

central field, B (0) 0.5T
ion mass (H), mi 1.7 ' 10" 27 kg
ion skin depth, di 0.032m

sound gyro-radius, " s (0) 1.8 ' 10" 3 m - 3.8 ' 10" 3 m
Alfvén velocity, VA 1.5 ' 106 m/s

Alfvén time, #A = a/V A 1.6 ' 10" 7 s
magnetic di↵usivity, $/µ 0 0.063m2/s - 63.0m2/s

The safety factor q and normalized parallel current,
�a = µ0aJ||/B, profiles of our straight-spheromak equi-
libria are shown in Figure 14. The parallel current profile
only depends on the safety factor profile and the phys-
ical dimensions of the cylinder. Both profiles are inde-
pendent of Ds. The safety factor on the magnetic axis
is specified to be q (0) = 0.66, and at the boundary it
is q (a) = 0.52. These values are chosen such that the
q = 1/2 and q = 2/3 surfaces are not in the domain,23

and the lowest-order resonant surface in the domain is the
q = 3/5 surface. Although q-profiles of flux-core sphero-
maks are non-monotonic, our chosen profile is similar to
the central part of distributions that were achieved at
least transiently in SSPX discharges, as shown in Fig. 4b
of Ref. 22. The corresponding �a profile decreases radi-
ally outwards from the magnetic axis and is comparable
to optimized SSPX profiles, such as the reconstruction
shown in Fig. 7 of Ref. 23.
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FIG. 14. Safety factor (q) and normalized parallel current
density (%a) profiles for straight spheromak equilibria.
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A characteristic ion diamagnetic frequency in our com-
putations is calculated using !⇤i =

m
rs

�pi
aneB0

, where �pi
is the change in the ion pressure from the magnetic axis
to the wall, and rs is the radius of the rational surface.
The normalized ion diamagnetic frequency, !⇤i⌧A, for the
m = 3, n = 5 mode resonant at the q = 0.6 surface varies
from 4.3⇥ 10�4 for Ds = 0.2 to 4.3⇥ 10�3 for Ds = 2.0.

Our numerical computations use biquintic elements
with a mesh of 40 elements in the radial direction and 20
elements in poloidal direction. The elements are radially
packed near the mode rational surface. Sensitivity stud-
ies show that this spatial representation and the chosen
time-step value for each computation yield linear growth
rates accurate to 1%. For numerical reasons, all of our
computations use small amounts of artificial density dif-
fusion and thermal conduction. All computations in Sec-
tions IVA-IVC have the artificial number density hyper-
di↵usivity parameter set to Dh = 1.7⇥ 10�10a4/⌧A. The
isotropic thermal di↵usivity �iso, number density di↵u-
sivity Dn, and viscosity ⌫iso are varied with the magnetic
di↵usivity such that ⌘/µ0 = 10⌫iso, ⌘/µ0 = 10Dn, and
⌘/µ0 = 100�iso. The magnetic divergence di↵usivity is
varied from 2.6 ⇥ 10�2 to 2.6 in a2/⌧A, as needed, to
maintain low divergence error without undue e↵ect on
the numerical eigenmodes.

A. Linear Resistive MHD Calculations

We start by considering interchange modes using the
resistive MHD model as a baseline for comparison. Fig-
ure 15 shows the resistive MHD linear growth rates for
the m = 3, n = 5 mode. Figure 15A shows the lin-
ear growth rates as a function of the Suydam parameter
for S = 6.3 ⇥ 106. The solid vertical line indicates the
marginal ideal stability condition, Ds = 0.25. Near the
marginal point, growth rates are small, �⌧A = 0.016%
for Ds = 0.5, and the growth rate increases with increas-
ing Ds. This is in agreement with the prediction that
the growth rates are exponentially small near marginal
stability.24,25 Figure 15B shows the linear growth rate as
a function of the resistivity. Resistive interchange scal-
ing of �⌧A ⇠ S�1/3 is observed for Ds = 0.2, consistent
with expectation from analytical theory.26 The cases with
Ds > 0.25 behave ideally in that their growth rates do
not scale with the resistivity, but they do increase with
increasing Ds. We note that Ebrahimi, et al. previously
studied the transition from resistive to ideal stability in
cylindrical equilibria with shear.27 Their profiles are rel-
evant to reversed-field pinches, and the computations fo-
cus onm = 1 modes. Nonetheless, the two sets of findings
are in qualitative agreement; for example, compare our
Figures 15A-B to their Figures 2 and 4.
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FIG. 15. The resistive MHD growth rates are plotted in A
as a function of the Suydam parameter D s for S = 6.3 ' 106.
The vertical line indicates the ideal marginal stability point
D s = 0.25. The growth rates are plotted as a function of
Lundquist number in B. The case D s = 0.2 exhibits resistive
interchange scaling.

B. Linear Calculations with Gyroviscosity

The linear calculations are repeated including ion
gyroviscosity in the momentum equation, which is calcu-
lated self-consistently from the equilibrium. These calcu-
lations use the same physical and numerical parameters
as the resistive MHD calculations. Figure 16 shows the
linear growth rates and real frequencies calculated us-
ing this model. The growth rates are compared to the
resistive MHD results in Figure 16A. We observe that
gyroviscosity has a minimal e↵ect on the growth rate of
the strongly ideal unstable modes, i.e. Ds � 1.0. For
the case with Ds = 0.5, gyroviscosity reduces the growth
rate by 25% to 35%. For this case the growth rate is
weakly dependent on S; it changes by 7% as S is varied,
but no clear trend is observed.
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FIG. 16. The growth rates calculated using resistive MHD
(triangles) and gyroviscous (squares) models are shown in A).
The magnitude of the real frequency for the gyroviscous cal-
culations are shown in B).

We find that the growth rate of the resistive mode,
Ds = 0.2, scales as �⌧A ⇠ S�2/5. This scaling is stronger
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than the resistive MHD scaling, S�1/3, but not as strong
as S�1 predicted for the limit !⇤ � �.25 Since the gy-
roviscous results show a stronger dependence on S than
the resistive MHD results, gyroviscosity has more influ-
ence at large S. The growth rate is reduced by 7% at
S = 6.3 ⇥ 103, while the growth rate is reduced by 57%
at S = 6.3⇥ 106.

Gyroviscosity also imparts a real frequency on the
modes. The magnitudes of these frequencies are shown in
Figure 16B. The values are small compared to the growth
rates for Ds = 1.0 and 2.0, but they are comparable to
the growth rates for Ds = 0.2 and 0.5 . The real fre-
quency exhibits no dependence on S for Ds = 2.0, but it
increases with S for Ds = 0.5 and 1.0. For Ds = 1.0
the real frequency increases by 14% as S is increased
from 9.6 ⇥ 104 to 6.3 ⇥ 106. For Ds = 0.5 the real fre-
quency increases by 80% over the same range in S. For
Ds = 0.2 the real frequency decreases with increasing S.
At large S-values the real frequency scales as S�2/5, like
the growth rate.

Figure 17 shows how the growth rate depends on the
strength of the gyroviscosity for Ds = 0.5 and 0.2. The
vertical axes in Figures 17A-B use di↵erent scales. In
these calculations the strength of the gyroviscosity is ar-
tificially scaled, and the Hall parameter, ⇤ = di/a, is
used to indicate the strength of the gyroviscosity to make
direct comparisons to calculations in Sections IVC and
IVD that use the full extended MHD model. The growth
rates in Figure 17 are calculated using S = 1.6⇥106. The
vertical lines indicate where the gyroviscosity has the cor-
rect magnitude for Equation 8, and the MHD limit with-
out gyroviscosity is at ⇤ = 0.0.
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FIG. 17. The growth rate and real frequency, calculated using
the gyroviscous model, as a function of the Hall parameter ⇤
for A) D s = 0.5, B) D s = 0.2. Calculations use S = 1.6 ' 106.
The vertical line indicates the correct Hall parameter for these
equilibria.

We find that the growth rate always decreases with
increasing ⇤. However, there are two clear phases. At
small ⇤-values the growth rate has a strong dependence
on ⇤; a small increase in ⇤ leads to a large decrease in
the growth rate. In this region the real frequency of the
mode increases with ⇤. At large ⇤-values the growth

rate only weakly depends on ⇤. Here, the real frequency
slowly decreases with ⇤. Similar behavior is observed for
the Ds = 1.0 and Ds = 2.0 cases, but an unrealistically
large gyroviscosity is needed to substantially a↵ect the
growth rate. Similar to the g-mode cases of Section III B
with X2

⇤g � 4A⌥0 < 0, stabilization of the interchange
mode through gyroviscosity alone is not observed for any
of our straight-spheromak cases.

C. Single Temperature Extended MHD Calculations

We repeat the linear calculations using the full ex-
tended MHD model that includes the two-fluid Ohm’s
law and ion gyroviscosity in the momentum equation.
These calculations solve a single temperature equation
for Ti with Te maintained at a fixed factor times Ti. Un-
less stated otherwise, we set Te = Ti.
The computed growth rates for this model are shown

in Figure 18. Unlike results from the gyroviscous model,
the full extended MHD results are greater than the MHD
growth rates for all Ds with S & 105. The growth rate
is increased by 65% for Ds = 2.0, and the growth rate
is increased by approximately 20 � 25% for Ds = 0.5
and Ds = 1.0. The greatest di↵erence is for Ds = 0.2
at the largest S-values. At S = 6.3 ⇥ 106 the extended
MHD growth rate is approximately seven times larger
than the resistive MHD growth rate. Moreover, the ex-
tended MHD growth rate for Ds = 0.2 increases with
increasing S, i.e. decreasing resistivity. The growth rate
increases from �⌧A = 4.0 ⇥ 10�4 at S = 9.6 ⇥ 104 to
�⌧A = 5.9 ⇥ 10�4 at S = 6.3 ⇥ 106, an increase of 48%.
For this resistive case, S & 105 is where the resistive skin-
depth d⌘ =

+
a2/S�⌧A is comparable to or smaller than

di.
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FIG. 18. The growth rate A) and real frequency B) as a
function of S using the full extended MHD single temperature
model. The extended MHD growth rates (x) are compared
with the MHD growth rates (circles).

Over most of the range of S-values shown in Figure 18,
the real frequency of the modes is nearly independent of
S forDs = 0.2, 1.0, and 2.0, and the magnitude of the fre-
quency for these modes increases with Ds. However, the
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magnitude of the frequency for Ds = 0.5 is smaller than
that for the Ds = 0.2 case, and the frequency dramati-
cally decreases between S = 9.6⇥ 104 and S = 3.9⇥ 105.
This large change in frequency is indicative of a transi-
tion to a di↵erent mode. A similar change in frequency
is observed for Ds = 0.2 at small-S.

To understand this behavior we examine the depen-
dence of the extended MHD growth rate when scaling ⇤,
as done in Section IVB. Figure 19 shows the growth rate
at S = 9.6⇥104. Here, there is evidence of two (or more)
instabilities, and the one that dominates di↵ers among
di↵erent ⇤-values. The extended MHD e↵ects are stabi-
lizing at small-⇤ for all of the cases with Ds  1.0, and
the growth rate decreases with increasing ⇤.
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FIG. 19. The extended MHD growth rates and real frequen-
cies are shown as a function of ⇤ for S = 9.6 ' 104.

A transition to a second instability is evident where the
growth rate starts to increase with ⇤. This transition oc-
curs at ⇤ ⇡ 0.06 for Ds = 0.2, ⇤ ⇡ 0.03 for Ds = 0.5,
and ⇤ ⇡ 0.06 for Ds = 1.0 (not shown). There is also a
noticeable jump in the real frequency around this transi-
tion for Ds = 0.2 and Ds = 0.5. The real frequency for
Ds = 0.5 jumps again between ⇤ = 0.10 and ⇤ = 0.13,
possibly indicating a third mode, though the growth rate
changes smoothly between these two values. The approx-
imate range of ⇤ over which the extended MHD e↵ects
enhance stability relative to resistive MHD is indicated
by the shaded regions in Figures 19A-B. Thus, the phys-
ically relevant value of the Hall parameter (indicated by
the black vertical lines) lies outside the region where the
extended MHD e↵ects improve stability. Here, the sec-
ond instability is the dominant mode. Computed growth
rates exhibit a similar dependence on ⇤ at S = 1.5⇥ 106

(not shown). This is consistent with the results in Figure
18, which show that growth rates and, to a large extent,
real frequencies do not change between S = 9.6⇥104 and
S = 1.5⇥ 106.

The existence of the second instability counteracts the
drift stabilization of the interchange mode. DeLucia, et
al. did not observe a second instability in their two-
fluid calculations,14 but they assumed cold ions, so the
total pressure in their calculations is entirely due to the
electrons. Motivated by the di↵erence between the two

results, we perform a second series of calculations where
the electron temperature is three times the ion tempera-
ture. These computations have the same profile of total
pressure as those with Te = Ti. The results are shown
in Figure 20 for Ds = 1.0 and Ds = 2.0. There is little
change in the growth rate for ⇤ . 0.05, where the inter-
change mode is the dominant mode. However, at larger
values of ⇤, where the second instability dominates, the
case with the colder ions has smaller growth rates. This
trend is consistent with the di↵erences between our re-
sults and the (Ti = 0) results of DeLucia, et al. It is also
consistent with our “two-fluid,” i.e. extended MHD with-
out ion FLR e↵ects, analysis of the g-mode, discussed in
Section III, which shows that the second instability does
not exist in the cold-ion limit, where H ! 0.
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FIG. 20. Increasing the ratio of Te/T i decreases the linear
growth rate at large ⇤. The linear growth rates are shown for
two values of Te/T i . These calculation use the single temper-
ature extended MHD model at S = 9.6 ' 104.

D. Linear Extended MHD Two-Temperature Calculations

Amodel that is not considered in Section III includes
gyroviscosity, the two-fluid Ohm’s law, and independent
evolution of electron and ion temperatures. The equilib-
rium ion and electron temperatures profiles are assumed
to be equal, and we impose the ion-diamagnetic flow as
part of the equilibrium. The calculations also include the
diamagnetic heat flux density17 ~q⇤ = �k⇤sb̂⇥rTs, where
k⇤i = � 5nTi

2mi ⌦i
and k⇤e = 5nTe

2me ⌦e
. The diamagnetic heat

flux is a FLR correction that is similar to gyroviscosity.
However, the electron and ion diamagnetic heat fluxes
cancel when Ti = Te.
This model is the most computationally challenging

model for NIMROD’s combination of numerical methods,
and the computations presented here use increased par-
ticle and thermal di↵usivities. In these calculations we
only consider S = 9.6⇥ 104 and use Dn = �iso = 7⌘/µ0.
The isotropic viscosity is kept small relative to the mag-
netic di↵usivity ⌘/µ0 = 10⌫iso.
The linear growth rates are calculated as a function

of ⇤ by scaling the unit charge (e). The equilibrium ion
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flow is scaled consistently with the unit charge. The lin-
ear growth rates and their real frequencies are shown in
Figure 21. Figure 21A shows the growth rate and real fre-
quency for Ds = 2.0, and Figure 21B shows the growth
rate and real frequency for Ds = 1.0. The shaded re-
gion roughly indicates the range of ⇤ where the extended
MHD two-temperature growth rate is smaller than the re-
sistive MHD growth rate. The solid vertical line indicates
the physical value of ⇤.
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FIG. 21. The linear growth rates and real frequencies calcu-
lated using the full extended MHD model with separate elec-
tron and ion temperature advances are shown for D s = 2.0
(A) and D s = 1.0 (B). Also shown in A are the linear growth
rates calculated using the single temperature full extended
MHD model.

The enhanced particle and thermal di↵usivities have
a noticeable stabilizing e↵ect on the MHD growth rate
(⇤ = 0). At Ds = 2.0 the enhanced di↵usivities de-
crease the MHD growth rate by 16%. At Ds = 0.2 they
decrease the MHD growth rate by 42%. For purposes
of making direct comparisons, a series of extended MHD
single-temperature calculations is rerun at Ds = 2.0 with
the dissipation parameters used in the two-temperature
computations. The results of these single-temperature
calculations are also shown in Figure 21A.

The results of the Ds = 1.0 series of computations,
shown Figure 21B, clearly indicate two separate insta-
bilities. The interchange mode exists at small ⇤-values,
and its growth rate is reduced with increasing ⇤. The real
frequency of the mode increases roughly linearly with ⇤.
At ⇤ = 0.13 the interchange mode is nearly stabilized.
The growth rate value of �⌧A = 2.7 ⇥ 10�4 represents
a 94% reduction relative to the MHD limit. Between
⇤ = 0.13 and ⇤ = 0.20, the growth rate remains small
and decreases with ⇤, but the real frequency continues
to increase linearly with ⇤. Around ⇤ = 0.2 a second
mode becomes unstable, as indicated by the jump in the
real frequency. The growth rate and real frequency of
the second mode increases with ⇤, and its growth rate
surpasses that of the MHD limit at ⇤ = 0.27

Similar behavior can be observed for Ds = 2.0 in Fig-
ure 21A. However, the second instability becomes domi-
nant before the extended MHD e↵ects have significant in-

fluence on the interchange mode. The minimum recorded
growth rate at ⇤ = 0.09 is 46% of the MHD limit, and a
jump in the real frequency is observed between ⇤ = 0.06
and ⇤ = 0.09. We note that the transition to the second
mode occurs at larger ⇤-value for the two-temperature
calculations than it does for the single-temperature cal-
culations, and the two-temperature calculations yield ap-
preciably smaller growth rates for all ⇤ > 0.05.
The extended MHD two-temperature model also re-

duces the interchange growth rate in ⇤ < 0.2 computa-
tions with Ds = 0.2 and Ds = 0.5. Moreover, the second
instability is not observed in these conditions. Results
presented in Ref. 10 show a particularly dramatic ef-
fect on the Ds = 0.5 mode, starting from modest ⇤-
values. The growth rates from the extended MHD two-
temperature model are reduced by at least an order of
magnitude relative to results with all other models, and
the growth-rate values are comparable to those of resis-
tive MHD interchange modes; for 0.03 . ⇤ < 0.2 the
growth rate is reduced to �⌧A ⇡ 10�4. We note that for
Ds = 0.5, the pressure gradient is substantial, leading to
appreciable diamagnetic drifts, but the Suydam criterion
remains in the small ideal growth-rate regime.25

V. DISCUSSION AND CONCLUSIONS

In this study, we have analyzed two di↵erent classes
of interchange-type modes with di↵erent extended MHD
models that have been applied in a variety of contexts.
Our g-mode analysis considers three di↵erent extended
MHD models. The first two models are incomplete repre-
sentations of the third model, which includes gyroviscos-
ity and two-fluid e↵ects. This third model is also incom-
plete in that it neglects the diamagnetic heat flux. Our
straight-spheromak analysis also considers three di↵er-
ent extended MHD models; though, we compare single-
and two-temperature results and skip the model without
gyroviscous stress. Although their physical relevance is
limited, the simplified models can test di↵erent aspects
of numerical models and are useful for verifying imple-
mentations.
Our first finding is that the three models have qual-

itatively di↵erent stability properties. The gyroviscous
model is always more stable than MHD, and increasing
the drift parameter |G| always reduces the growth rate.
There is only one instability in this model, the g-mode,
but there are situations where stabilization fails, con-
sistent with results from Ref. 7. The stability of the
two-fluid model without gyroviscosity is determined by
a balance between drifts due to equilibrium ion density
and ion temperature gradients. This balance is charac-
terized by the ITG stability parameter ⌘i; a second insta-
bility exists when ⌘i > 2/3. This mode is driven unstable
through the interaction of the ion drift wave and the low-
frequency branch of the stabilized g-mode. For values of
⌘i near 2/3, there is a stable region in G that separates
the g-mode and the second instability. However, at suf-
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ficiently large ⌘i the two modes merge, and the region of
stability disappears. This second mode grows at a rate
that is comparable to the MHD g-mode, and it is unsta-
ble at infinite |G|.

A second mode is also observed in the full model, but
there are qualitative di↵erences between it and the sec-
ond mode of the two-fluid model. In the full model, this
instability is driven unstable through the interaction of
the ion drift wave and the high-frequency branch of the
stabilized g-mode. Where this mode initially appears in
parameter space, there is no region of stability separat-
ing it from the g-mode. However, at su�ciently large ⌘i,
the two modes are distinct and separated by a region of
stability. This second mode is stabilized at finite G.

Our second finding is that the full extended MHD
model contains unphysical modes with large growth
rates. These modes exist at large kyri, where the small
Larmor radius assumption is not valid. These instabil-
ities have growth rates that are much greater than the
MHD growth rate of the g-mode, and they may appear
in computations that use the extended MHD model.

The dynamics of all three models is strongly influenced
by ion drifts. The quantities N and P have factors of ⌧
implicit in their definitions. (Note that the ⌧ dependence
in S = ⌧�/N is artificial.) In the cold-ion limit, the g-
mode dispersion relation greatly simplifies:

(1 + �s�)!
2 + !g! + �2

M (1 + �s�) +
g2

V 2
a

= 0. (53)

This is the cold ion limit of the Roberts-Taylor disper-
sion relation, corrected for finite compressibility. Here,
stabilization always occurs when !g is significantly large.

The general findings on the di↵erent stability proper-
ties of the three models are qualitatively consistent with
the results reported in Ref. 9. Direct comparison of our
results and most of their local-analysis results is chal-
lenged by di↵erences in equilibrium profiles. However,
the � = 0.1 case shown in their Fig. 6 has little or no
gradient in equilibrium-B, as in our profiles, since their
�p0 approximately matches their Lgn/V 2

Ac-value. Stabi-
lization is achieved where the frequency is approximately
equal to the growth rate in the k ! 0 limit, which is
consistent with our result shown in Figure 1. However,
we note that the two results are evaluated for di↵erent
S = g2/V 2

a �
2
M values.

Our computations for straight-spheromak equilibria
also show qualitatively di↵erent results for di↵erent ex-
tended MHD models. The gyroviscous model always pro-
duces growth rates that are smaller than MHD results,
but the di↵erence is only significant for Ds . 0.5. A sec-
ond instability is present in the single-temperature ex-
tended MHD model that includes gyroviscosity and the
two-fluid Ohm’s law. This second mode is unstable at
experimentally relevant ⇤-values and has a growth rate
that is comparable to the resistive MHD growth rate.
According to this model, the second instability is the
dominant mode at SSPX-relevant values of ⇤, and its
growth rate is often greater than the MHD interchange

growth rate. The instability also results with the two-
temperature extended MHDmodel. However, the growth
rate of the second instability is reduced, and the onset
of the second instability occurs at larger ⇤-values. As
a result, there is a range of SSPX-relevant parameters
with physical values of ⇤ and Ds . 1.0, where growth
rates are significantly reduced relative to MHD predic-
tions. This finding may be relevant to the apparent
ideal-MHD �-limit observed in SSPX discharges during
periods when the safety-factor profile lies above 1/2.22

A tendency for symmetry-breaking modes and reduced
confinement in nonlinear resistive-MHD simulations of
the quiescent phase of SSPX discharges has been noted
in previous work,28 and it is possible that consistent two-
temperature extended MHDmodeling would yield results
that better represent the experiment’s confinement prop-
erties.

There have been other studies of extended MHD e↵ects
on resistive interchange modes that use this or similar
equilibria. DeLucia et al. used this family of equilibria
to study m = 1 interchange modes for Ds = 0.175.14

They found stabilization of these modes for ⇤ & 0.2,
and they do not encounter a second instability. How-
ever, they use a single-temperature two-fluid model that
assumes cold ions. Hammet and Tang also studied re-
sistive interchange modes in these equilibria using a gy-
rokinetic ballooning model.15 They order drift waves out
of the system in their analysis. If the instability in the
straight spheromak is due to a drift-wave interaction, as
in the slab configuration, then the absence of ion drift
waves in these previous spheromak studies may explain
why neither observe the second instability.

There are both similarities and di↵erences between our
g-mode results and those for the pressure-driven inter-
change in a screw pinch. The growth rate and frequencies
calculated using the gyroviscous model are similar. For
example, compare Figures 2 and 17. In both analyses the
gyroviscous model is more stable than MHD, increasing
the Hall parameter decreases the growth rate, and similar
variations in the real frequency result.

A second instability is present in both the straight-
spheromak and g-mode analyses when using the full ex-
tended MHD model. However, the growth rate of the sec-
ond mode exceeds the MHD growth rate in the straight
spheromak, whereas the resulting g-mode growth rate is
always less than the MHD growth rate. Both analyses
exhibit cases where there is a clear separation between
the two modes, and both exhibit cases that smoothly
transition from one mode to the other. In the straight-
spheromak configuration, decreasing the ion temperature
at fixed pressure decreases the growth rate of the sec-
ond mode. For the g-mode decreasing the ion tempera-
ture delays the onset of the second mode and reduces its
growth rate. Our complete eigenmode analysis for the
slab equilibria shows that the second instability is due to
an interaction between an ion drift wave and the g-mode.
Our straight-spheromak computations only identify the
fastest-growing mode for a given set of parameters, but
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the similarities in the results for the two configurations
suggest that the second instability in the straight sphero-
mak could be due to a similar interaction.
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Appendix A: Proof of Gyroviscous Stabilization for P ( N .

In this appendix we show that the bracketed term
in Equation 34 is positive for 0 < N  P . Let the
functions U (P,N) = (aP + b)2 � cN � d and V (P ) =
(aP + b)2 � cP � d where a = (1 + �s�) (1 + �), b =
(2 + �s�) ⌧�, c = ⌧� (1 + �s�), and d = ⌧2�2. The func-
tion U is the bracketed term in Equation 34, multiplied

by
%
1 + �s� + ⌧�

N

&
. Positive U implies that the brack-

eted term is positive. The function V is the limiting case
of U where P = N .

The di↵erence between the two functions is U (P,N)�
V (P ) = �c (N � P ). By assumption N  P and thus
U (P,N) � V (P ) � 0. Therefore if V is positive for
positive P , then U is positive for 0 < N  P . V is a
quadratic in P , and it has a global minimum at

Pmin =
⌧�

2

1� 2 (2 + ��) (1 + �)

2 (1 + ��) (1 + �)2
 0. (A1)

It is su�cient to evaluate V (P = 0) since Pmin is nega-
tive:

V (0) = b2 � d = ⌧2�2
)
3 + 4�s� + �2

s�
2
*
� 0. (A2)

The proof is complete.

1D. D. Schnack, D. C. Barnes, D. P. Brennan, C. C. Hegna,
E. Held, C. C. Kim, S. E. Kruger, A. Y. Pankin, and C. R.
Sovinec, Physics of Plasmas 13 , 058103 (2006).

2J. P. Freidberg, Reviews of Modern Physics 54 , 801 (1982).

3M. N. Rosenbluth, N. A. Krall, and N. Rostoker, Nucl. Fusion
Suppl. 1, 143 (1962).

4K. V. Roberts and J. B. Taylor, Physical Review Letters 8, 197
(1962).

5J. D. Huba, Physics of Plasmas 3, 2523 (1996).
6N. M. Ferraro and S. C. Jardin, Physics of Plasmas 13 , 092101
(2006).

7P. Zhu, D. D. Schnack, F. Ebrahimi, E. G. Zweibel, M. Suzuki,
C. C. Hegna, and C. R. Sovinec, Physical Review Letters 101 ,
085005 (2008).

8R. Goto, H. Miura, A. Ito, M. Sato, and T. Hatori, Physics of
Plasmas 22 , 032115 (2015).

9A. Ito and H. Miura, Physics of Plasmas 23 , 122123 (2016).
10E. C. Howell, Extended MHD Study of Interchange Modes

in Spheromaks , Ph.D. thesis, University of Wisconsin-Madison
(2015).

11E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nuclear
Fusion 39 , 863 (1999).

12E. B. Hooper, R. H. Bulmer, B. I. Cohen, D. N. Hill, C. T. Hol-
comb, B. Hudson, H. S. McLean, L. D. Pearlstein, C. A. Romero-
Talamás, C. R. Sovinec, B. W. Stallard, R. D. Wood, and
S. Woodru!, Plasma Physics and Controlled Fusion 54 , 113001
(2012).

13S. Jardin, Nuclear Fusion 22 , 629 (1982).
14J. DeLucia, S. C. Jardin, and A. H. Glasser, Physics of Fluids

27 , 1470 (1984).
15G. Hammett and W. Tang, Nuclear Fusion 23 , 1503 (1983).
16T. Nicolas and K. Ichiguchi, Nuclear Fusion 56 , 026008 (2016).
17S. I. Braginskii, Reviews of Plasma Physics 1, 205 (1965).
18R. D. Hazeltine and J. D. Meiss, Plasma ConÞnement (Addison-

Wesley, Redwood City, CA, 1992).
19C. R. Sovinec, A. H. Glasser, T. A. Gianakon, D. C. Barnes, R. A.

Nebel, S. E. Kruger, D. D. Schnack, S. J. Plimpton, A. Tarditi,
M. S. Chu, and the NIMROD Team, Journal of Computational
Physics 195 , 355 (2004).

20C. R. Sovinec, J. R. King, and the NIMROD Team, Journal of
Computational Physics 229 , 5803 (2010).

21D. D. Schnack, J. Cheng, D. C. Barnes, and S. E. Parker, Physics
of Plasmas (1994-present) 20 , 062106 (2013).

22S. Woodru!, E. B. Hooper, L. D. Pearlstein, R. Bulmer, D. N.
Hill, C. T. Holcomb, H. S. McLean, J. Moller, B. W. Stallard,
and R. D. Wood, Physics of Plasmas 13 , 044506 (2006).

23H. S. McLean, R. D. Wood, B. I. Cohen, E. B. Hooper, D. N. Hill,
J. M. Moller, C. Romero-Talamás, and S. Woodru!, Physics of
Plasmas 13 , 056105 (2006).

24T. E. Stringer, Nuclear Fusion 15 , 125 (1975).
25S. Gupta, J. D. Callen, and C. C. Hegna, Physics of Plasmas 9,

3395 (2002).
26B. Coppi, J. M. Greene, and J. L. Johnson, Nuclear Fusion 6,

101 (1966).
27F. Ebrahimi, S. C. Prager, and C. R. Sovinec, Physics of Plasmas

(1994-present) 9, 2470 (2002).
28E. B. Hooper, B. I. Cohen, H. S. McLean, R. D. Wood, C. A.

Romero-Talamás, and C. R. Sovinec, Physics of Plasmas 15 ,
032502 (2008).


